Управление гирляндой на микроконтроллере. Схема новогодней гирлянды на микроконтроллере

Всем нам хорошо знакомы елочные гирлянды, состоящие из разноцветных лампочек. Однако в последнее время большую популярность приобретают изделия на основе led светодиодов.

Как они устроены, какую имеют схему подключения и что делать, если гирлянда перестала светиться, подробно рассмотрим в данной статье.

Из чего состоит елочная гирлянда

Что же из себя представляет гирлянда из светодиодов, хуже она или лучше обычной?

Внешне это почти то же самое изделие, что и раньше — провода, лампочки (светодиодные), блок управления.

Самый главный элемент — это конечно блок управления. Маленькая пластиковая коробочка, на которой указаны всевозможные режимы работы подсветки.

Меняются они простым нажатием кнопки. Сам блок может быть с довольно хорошо защищенным уровнем влаго и пылезащиты IP44.

Что у него внутри? Чтобы его вскрыть, острым кончиком ножа или тонкой отверткой поддеваете защелки снизу и скидываете защитную крышку.

Кстати, иногда она бывает приклеена, а не просто сидеть на защелках.

Первым делом, внутри увидите припаянные к плате провода. Более толстый провод, это как правило сетевой, подающий напряжение 220В.

На плате припаяны:

  • контроллер, который и создает все световые эффекты
  • тиристоры, каждый из них идет на отдельный канал гирлянды
  • резисторы
  • конденсатор
  • и диодные мосты

Количество элементов платы, зависит в первую очередь от числа световых каналов гирлянды. В более дорогих моделях может присутствовать предохранитель.

Схема светодиодной гирлянды

Сетевое переменное напряжение через резисторы и диодный мост, уже в выпрямленном виде и сглаженное через конденсатор, подается на питающий контроллер.

При этом данное напряжение поступает через кнопку, разомкнутую в нормальном состоянии. Когда вы ее замыкаете, происходит переключение режимов контроллера.

Контроллер в свою очередь управляет тиристорами. Их число зависит от количества каналов подсветки. И уже после тиристоров выходное питание идет непосредственно на светодиоды в гирлянде.

Чем больше таких выходов, тем разнообразнее цветовых расцветок может иметь изделие. Если их всего два, это означает, что только две части (или половинки) гирлянды будут работать в различных режимах - одни лампочки тухнуть, другие загораться и т.д.

Фактически эти две линейки диодов будут подключены по двум каналам последовательно. Соединяться они будут между собой в конечной точке - последнем светодиоде.

Если вас по какой-то причине раздражает мигание гирлянды и вы захотите, чтобы она ровно светилась только одним цветом, достаточно на обратной стороне платы, с помощью пайки закоротить катод и анод тиристора.

Чем более дорогая гирлянда у вас в распоряжении, тем больше отходящих каналов и проводков будут уходить от платы управления.

При этом, если проследить по дорожкам платы, один из выводов сетевого напряжения, всегда подается напрямую на конечный светодиод гирлянды, минуя все элементы схемы.

Причины неисправности

Ситуации с неисправностями гирлянды бывают самыми разнообразными.

При этом запомните, что самый главный элемент - микросхема на плате, "горит" очень-очень редко.

Примерно в 5-10% всех случаев.

  • Плохой контакт на проводах
  • Светодиод в одной из лампочек
  • Конденсатор
  • Сопротивления
  • Один из диодов
  • Один из тиристоров
  • Микросхема контроллера

Плохая пайка

Если у вас вдруг перестала работать подсветка, в первую очередь всегда проверяйте именно пайку питающих и отходящих проводов. Вполне возможно, что весь контакт держался только за счет термоклея.

Стоит пошевелить проводок и контакта как ни бывало.

Самая распространенная проблема китайских гирлянд - это использование очень тонких проводков, которые просто отламываются в местах пайки на плате.

Чтобы такого не происходило, все контакты после припаивания должны быть залиты толстым слоем термоклея.

А еще при зачистке таких жил, советуют использовать не нож, а зажигалку. Вместо состругивания изоляции лезвием, слегка нагрейте и расплавьте ее огнем зажигалки.

После чего, ногтями просто снимите внешний слой, не повреждая сами жилы.

Повреждение светодиода

Если контакты проводов в порядке и вы грешите на один из диодов, как можно проверить его неисправность? И самое главное, как его найти среди всей череды лампочек?

Прежде всего выключаете гирлянду из розетки. Начинаете с последнего диода. На него напрямую с блока управления приходит провод питания.

К этой же ножке припаян отходящий проводник. Он идет на следующую ветку светового канала. Вам же нужно тестировать диод между его двумя проводами питания (вход-выход).

Понадобится мультиметр и его несколько модернизированные щупы.

К кончикам щупов тестера, ниткой плотно приматываете тонкие иголки так, чтобы их острие выступало максимум на 5-8мм.

Сверху все заматываете плотным слоем изоленты.

Так как светодиоды припаяны, то просто вытащить их из лампочки как в обычных гирляндах здесь не получится.

Поэтому придется протыкать изоляцию жил, чтобы добраться до медных жил проводков. Переключаете мультиметр в режим прозвонки диодов.

И начинаете последовательно протыкать питающие провода возле каждого подозрительного диода.

Если у вас гирлянда не 220В, а 12В или 24В, которая подключается вот от такого блока питания:

то исправный светодиод от батарейки мультиметра должен загореться.

Если это подсветка 220V, то сверяете показания мультиметра.

На рабочих элементах они будут примерно одинаковыми, а вот неисправный покажет обрыв.

Метод конечно варварский и повреждающий изоляцию, зато вполне рабочий. Правда уличные гирлянды после таких проколов, лучше вне помещений уже не использовать.

Хаотичное моргание

Бывает ситуация, когда вы включаете гирлянду и она у вас начинает хаотически мигать, то ярче, то тусклее. Сама собой перебирает каналы.

В общем складывается впечатление, что это не какой-то заводской эффект, а как будто гирлянда "сошла с ума".

Чаще всего проблема здесь заключается в электролитическом конденсаторе. Он немного может вздуться, вспухнуть, причем это будет хорошо заметно даже не вооруженным глазом.

Все решается его заменой. Номинал указан на корпусе, так что без труда можно приобрести и подобрать аналогичный в магазинах радиодеталей.

Если поменяли конденсатор, а эффекта это не дало, где искать далее? Скорее всего сгорел один из резисторов (пробит). Пробой визуально определить довольно проблематично. Понадобится тестер.

Делаете замеры сопротивления, предварительно по маркировке узнав его номинальное (нормальное) значение. Если не соответствует - меняете.

Не светит часть гирлянды

Когда полностью не работает какой-либо из каналов на гирлянде, причины может быть две.

Например, пробой на одном из тиристоров или диодов отвечающих за него.
Чтобы убедиться в этом наверняка, просто отпаиваете проводок этого канала на плате со своего места и подключаете туда соседний канал, заведомо рабочий.

И если при этом другой канал, также перестает работать, то значит проблема не в самой гирлянде, а в компонентах его платы - тиристоре или диоде.

Проверяете их мультиметром, находите подходящие по параметрам и меняете.

Гирлянда тускло светит

Попадаются и не совсем очевидные аварии, когда светодиоды отдельного канала, вроде бы и горят, но довольно тускло по сравнению с остальными.

Что это значит? Схема контролера работает нормально. При нажатии кнопки, все режимы переключаются.

Прозвонка тестером параметров диодного моста и сопротивлений также не выявляет проблем. В этом случае остается грешить только на провода. Они и так довольно хилые, а при надрыве такого многожильного провода его сечение уменьшается еще больше.

В итоге гирлянда просто не способна запустить светодиоды в номинальном режиме яркости, так как им элементарно не хватает напряжения. Как найти в длинной гирлянде эту надорванную жилку?

Для этого вам придется ручками пройтись вдоль всей линии. Включаете гирлянду и начинаете шевелить проводки возле каждого светодиода, пока вся подсветка не загорится в полную силу.

По закону Мерфи, это может быть самый последний отрезок гирлянды, так что наберитесь терпения.

Как только находите этот участок, берете в руки паяльник и разбираете провода на светодиоде. Зачищаете их зажигалкой и заново все паяете.

После чего изолируете место пайки термоусадкой.

Способов разукрасить новогоднюю елку много, вот один из них.

На рисунке 1 изображена схема новогодней гирлянды. Она содержит четыре канала, к которым подключаются последовательно соединённые светодиоды, изображенные на рисунке 2.

Ядром схемы является микроконтроллер PIC16F628A. Микроконтроллер работает по алгоритму, изображенному на рисунке 3. Код программы написан на языке ассемблер, смотреть листинг Garland\16F628ATEMP.ASM.

Полный цикл внутрисхемного программирования и отладки микроконтроллера PIC16F628A был осуществлён при помощи (интегрированная среде разработки), компилятор MPASM v5.22 (входит в MPLAB IDE v8.15) и MPLAB ICD 2 (внутрисхемный отладчик - «Дебагер»). Для тех, кто не располагает средствами приведёнными выше, а имеет свою программу для работы с HEX файлами и иной программатор, можно в соответствующем проекте найти файл 16F628ATEMP.HEX. Техническую спецификацию микроконтроллера можно найти на сайте и .

Микроконтроллер DD1 имеет функциональные выходы RB4 – RB7, к которым подключаются усиливающие полевые MOSFET транзисторы VT1 – VT4. Техническую спецификацию транзисторов можно найти на сайте . Стоки транзисторов подключены к нажимным клеммникам X2 – X5. Напряжение питание нагрузки задаётся источником питания схемы, который подключают к разъёму X1. Максимальный коммутируемый ток на канал составляет 0.5 А. Микроконтроллер DD1 не имеет функции принудительного сброса, вывод для сброса подключен через резистор R1 к положительному потенциалу питания. Для генерации тактовой частоты в микроконтроллере используется встроенный генератор тактовой частоты на кристалле. Прибор может эксплуатироваться в диапазоне температур от – 40 °С до +85 °С.

Прибор запитывается от переменного или постоянного источника напряжения, подключаемого к разъему X1. Номинальное напряжение источника питания 12 В. Номинальный ток источника питания зависит от нагрузки и составляет 0.5 – 2 А. Для стабилизации питания используется обычная схема из диодного моста VD1, линейного стабилизатора DA1, фильтрующих конденсаторов C1 – C4.

В микроконтроллер запрограммированы 3 световых эффекта в основе лежит эффект «бегущие огни».
1) Гирлянды поочерёдно загораются и гаснут в одну и так же повторяют в другую сторону.
2) Гирлянды поочерёдно загораются и когда все четыре гирлянды горят, начинают поочерёдно гаснуть в том же направлении, так же повторяется и в обратном порядке.
3) 1 и 2, 3 и 4 гирлянды поочерёдно перемигиваются между собой. Микроконтроллер запрограммирован таким образом, что выполняет заранее установленное число повторов светового эффекта. Стоить отметить, что интервал времени между загораниями гирлянд меняется (нарастает, достигая пика, а затем падает), то есть виден эффект «временной раскачки». Для лучшей демонстрации световых эффектов гирлянды (так как они пронумерованы на схеме) следует располагать по порядку в одной плоскости. В данном случае украшение ели от корней до верхушки (по вертикали, разбив ель на четыре сектора для гирлянд), от 1 до 4 гирлянды, соответственно.

Питание гирлянд связано с источником питания подключаемым к разъёму X1, следовательно нужно рассчитывать последовательно соединённые светоизлучающие элементы (светодиоды, лампы накаливания). Общее напряжение питания находится из суммы напряжений последовательно соединённых светоизлучающих элементов. Так например, последовательно соединённых ярких светодиодов рассчитанных на напряжение 2 – 2,5 В будет 6 штук в одной гирлянде. Так как светодиоды потребляют 20 мА, не исключено параллельного подключения последовательно соединённых светодиодов в ряды.

Монтаж деталей односторонний. Размер отверстий от 0.7 мм до 3 мм. Файлы для изготовления печатной платы смотреть в папке .

Печатная плата изображена на рисунке 4. Расположение деталей смотреть на рисунке 5.

В данном устройстве можно заменить следующие детали. Микроконтроллер DD1 из серии PIC16F628A-I/P-xxx с рабочей тактовой частотой 20 МГц в корпусе DIP18. Стабилизатор напряжения DA1 отечественный КР142ЕН5А (5 В, 1.5 А). Полевые MOSFET транзисторы и VT1 – VT4 (N-канал) в корпусе I-Pak (TO-251AA), подойдут аналоги номиналов указанных на схеме. Диодный мост VD1 на рабочее напряжение не меньше 25 В и ток не меньше 2 А. Разъём питания X1 аналогичный указанному на схеме с центральным контактом d=2.1 мм. Неполярные конденсаторы С1 и С2 номиналом 0.01 – 0.47 µF x 50 V. Электролитические конденсаторы С3 и С4 ёмкостной номинал тот же, а напряжение не ниже указанного на схеме. Разноцветные светодиоды VD1 – VD6 на напряжение 2 - 2.5 В.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 МК PIC 8-бит

PIC16F628A

1 В блокнот
DA1 Линейный регулятор

L7805AB

1 КР142ЕН5А В блокнот
VT1-VT4 MOSFET-транзистор

IRLU024N

4 В блокнот
VD1 Диодный мост 2W10M 1 В блокнот
С1 Конденсатор 0.1 мкФ 1 В блокнот
C2 Конденсатор 0.1 мкФ 1 В блокнот
С3 100мкФ 10В 1 В блокнот
C4 Электролитический конденсатор 220мкФ 25В 1

Эта СДУ разработана в двух вариантах. Первый управляет только расположенными на его плате светодиодами и предназначен для разработки и отладки программ световых эффектов. Микроконтроллер с отлаженной программой может быть перенесён на плату второго варианта СДУ, к которому можно подключить 16 осветительных приборов, питающихся от сети 220 В

Из 20 выводов микроконтроллера ATtiny2313 в рассматриваемых СДУ использованы 19: два — для подачи напряжения питания; один — для подключения кнопки, управляющей скоростью воспроизведения световых эффектов; 16 — для формирования сигналов управления гирляндами или другими световыми приборами.

Предусмотрено восемь значений скорости воспроизведения эффектов, их переключают по кругу нажатиями на кнопку. При минимальной скорости состояние гирлянд изменяется каждые 8 с, а при максимальной период смены уменьшается до 0,5...1 с. Следует иметь в виду, что из-за особенностей программы необходимая для переключения скорости длительность нажатия на кнопку довольно велика. К тому же она зависит от скорости, установленной в данный момент. Информацию о скорости микроконтроллер хранит в своём EEPROM, поэтому при включении СДУ она становится такой же, какой была в предыдущем сеансе работы.

Рис. 1. Схема СДУ с микроконтроллером ATtiny2313 на 16 гирлянд

Схема отладочного варианта СДУ, управляющего только светодиодами HL1—HL16, изображена на рис. 1 .

Микроконтроллер DD1 работает от внутреннего RC-генератора частотой 4 МГц. Разъём ХР1 предназначен для соединения с программатором установленного в панель СДУ микроконтроллера. На время программирования цепь питания светодиодов должна быть разорвана выключателем SA1, что исключает их влияние на процесс программирования. Резистор R1 поддерживает высокий логический уровень напряжения на входе PD2 микроконтроллера, когда кнопка SB1 отпущена. При нажатой кнопке этот уровень становится низким.

Устройство собрано на печатной плате размерами 95x70 мм из фольгированного стеклотекстолита. Её чертёж показан на рис, 2 . Для микроконтроллера на плате предусмотрена панель. Это позволяет запрограммировать его и проверить в работе, а затем перенести в другую СДУ, которая будет описана ниже.

Плата рассчитана на установку оксидных конденсаторов (С1 и С2) SR или аналогичных. Диэлектрик конденсаторов СЗ и С4 — керамика. Резисторы — CF-0,125 или другие подобные. Трансформатор Т1 — ТПГ-2 с вторичным переменным напряжением 6 В, конструктивно предназначенный для установки на печатную плату. Можно применить его аналог BVEI 306 2061 мощностью 2,6 В-А. Стабилизатор DA1 в рассматриваемом случае теплоотвода не требует. Кнопки SB1 и выключатель SA1 могут быть любыми, подходящими по размерам для установки на плату.

Второй вариант СДУ управляет не светодиодами, а лампами накаливания или другими световыми приборами на 220 В. Для этого каждая из пар резистор—светодиод предыдущего варианта заменена симисторным коммутатором, схема которого изображена на рис. 3 . Для управления мощным симистором VS1 здесь использован оптрон 1)1, фотодинистор которого устроен так, что моменты его открывания всегда совпадают с переходами приложенного к нему напряжения через ноль. Это уменьшает создаваемые СДУ электромагнитные помехи.

Поскольку для управления оптроном МОС3043 достаточно тока через его излучающий диод всего 5 мА, суммарная нагрузка на микроконтроллер не превышает 80 мА. Общий ток потребления от узла питания в новом варианте приблизительно в два раза меньше. Это позволило отказаться от трансформатора и применить бестрансформаторный узел с гасящими конденсаторами. На его схеме (рис. 4 ) нумерация элементов продолжает начатую на рис. 1 .

Печатная плата второго варианта имеет размеры 195x85 мм. Её чертёж показан на рис. 5 . Элементы шестнадцати одинаковых коммутаторов имеют на нём позиционные номера с цифровыми префиксами, означающими порядковый номер коммутатора. Например, 8R1—8R3, 8U1, 8VS1 — элементы восьмого коммутатора, заменившего резистор R9 и светодиод HL8 и управляющего лампой накаливания (или собранной из них гирляндой) 8EL1.

Все 16симисторов 1VS1 — 16VS1 закреплены на общем теплоотводе из алюминиевой пластины размерами 160x25x2 мм, расположенной перпендикулярно поверхности платы. Крепёжные отверстия для симисторов просверлены в ней на высоте 19 мм от платы.

Симисторы ВТ138Х-600 в полностью изолированном корпусе TO-220F могут быть заменены приборами серий ВТ137—ВТ139 на 600 или 800 В, в том числе в обычном корпусе ТО-220 с металлическим крепёжным и тепло-отводящим фланцем. Поскольку этот фланец соединён внутри симистора с его выводом 2, а все эти выводы соединены на плате, изоляция симисторов от теплоотвода не требуется.

Рекомендуется сначала закрепить на теплоотводе симисторы, а затем смонтировать всю их сборку на плату. Непосредственно к выводам симисторов припаивают резисторы 1R3—16R3. Выводы 1 симисторов зажимают в обращенных к ним отверстиях винтовых зажимов ЗВИ-10-2,5-6 мм2, колодка с которыми (рис. 6 ) установлена вдоль длинной стороны платы рядом с сими-сторами. Всего в колодке 17 пар зажимов, 16 из которых служат для подключения ламп 1EL1—16EL1, а ещё одна — для их общего провода.


Конденсаторы С5 и С6 — К73-17В или импортные, способные работать при переменном напряжении не менее 250 В. Резисторы 1R1 —16R1 — MF-1.

Для микроконтроллера должна быть предусмотрена панель, в которую его следует устанавливать уже запрограммированным.

К статье прилагаются три версии программы микроконтроллера, пригодных для использования в обоих вариантах СДУ:
PG16H_S_REGULhex — 16 гирлянд работают независимо;
PG8_MK_S_REG.hex — две группы по восемь гирлянд работают синхронно;
PG4_MK_S_REGUL.hex — четыре группы по четыре гирлянды работают синхронно.

Конфигурацию микроконтроллера во всех случаях оставляют установленной на заводе-изготовителе.
Если используется меньшее число гирлянд (светодиодов), то элементы, относящиеся к неиспользуемым гирляндам, на платы описанных СДУ можно не устанавливать. При работе с СДУ второго варианта, все компоненты которого имеют гальваническую связь с сетью, необходимо соблюдать правила электробезопасности.

Журнал Радио,№11 2014г. И. АБЗЕЛИЛБАШ, г. Сибай, Башкирия

Близятся новогодние праздники и по этому поводу хочется сделать что-то светлое праздничное! Решил, вот, сделать новогоднюю гирлянду. Что может быть светлее и праздничней чем новогодняя гирлянда? :). Гирлянду решил сделать не простую, а наворочанную! 12 каналов плюс управление от IR-пульта. Чтобы не делать гирлянду с нуля, решено было в качестве доноров внутренних органов запчастей использовать уже готовые китайские гирлянды. Это имеет смысл по следующим соображениям:
— стоимость гирлянд, будем честно говорить, стоимость — копеечная. Попробуйте за те же деньги накупить провода, светодиодов, запчастей… А если не брать за цель светодиодную гирлянду, то лампочковые гирлянды сейчас продают почти даром;
— немаловажный фактор – уже готовые спаянные до кучи линии светодиодов. Паять самому, садить в термоусадки, ошибаться-переделывать 12 линий работа довольно муторная;
— еще, не знаю как у Вас, а у меня валяется определенное количество нерабочих гирлянд (их часто мне таскают подремонтировать – так и оседают) можно вообще не тратиться на новые, а собрать из того что есть.

Для затравки смотрим видео:

ВНИМАНИЕ!
опасного напряжения 220В!

ОПАСНО ДЛЯ ЖИЗНИ!
ПОЭТОМУ:




Если Вы осознаете опасность сборки такой гирлянды и обязуетесь соблюдать правила безопасности при работе с опасным напряжением, дальше можно прочитать о том, как собрать супер гирлянду.

1 Гирлянды пациенты.

В качестве жертв были куплены 3 новые светодиодные гирлянды – вот они красавицы 🙂

Стоимость по 3$ за штуку (100 светодиодов). Но китайцы если не сэкономят, то сами себе изменят! В гирляндах, по факту, оказалось по 3 канала. То есть сам контроллер четырех канальный, но тиристоров три и линий светодиодов тоже три. Дабы замаскировать такое безобразие китайцы в одной линии мешают светодиоды двух цветов. Короче, пришлось докупить еще одну:(. Но это еще не предел экономии, часто и густо каналов вообще два! Будьте внимательны – открывайте коробочку и смотрите, сколько стоит тиристоров.

Из оригинальных контроллеров для улучшенной гирлянды будут задействованы резисторы, выпрямительные диоды, тиристоры, кнопка, коробочки. Понадобится докупить чуть больше десятка резисторов, пару конденсаторов, микроконтроллер ATtiny2313 и еще по мелочи.

2 Схема.

Вот схема оригинальной гирлянды:

Из схемы видно, что диммирование каналов светодиодов осуществляется тиристорами PCR406

Даташит на тиристор PCR406

Не вижу смысла их менять на что-то другое. Для формирования напряжения питания оригинального контроллера используется гасящий резистор (гасящий резистор совместно с внутренним сопротивлением контроллера образуют делитель напряжения). Решение противоречивое, но в данном случае оправдывается дешевизной (ток контроллера незначительный и мощность, выделяемая на резисторе, очень мала). Взвесив за и против такого решения, решил и в своей схеме проделать нечто подобное. Правда ток ATtiny2313 (в пределах 8мА) значительно больше оригинального контроллера, но все же позволяет использовать гасящие резисторы.

Схема нового контроллера гирлянды:

6 Сборка платы источника питания.

Перед сборкой платы источника питания нужно проделать определенные замеры для расчета величины гасящих резисторов. Для этого подключаем спаянную плату контроллера с прошитым микроконтроллером к ВНЕШНЕМУ источнику 5 вольт (площадки +5v и -5v) и замеряем потребляемый ток. Подключать линии светодиодов не обязательно, они практически не оказывают влияние на потребляемый ток. Для обычного микроконтроллера ATtiny2313 без буквенных индексов потребляемый ток должен составлять около 7 — 9 мА. Для микроконтроллера ATtiny2313 с индексами (может быть A, P …) ток будет другой.

По полученному потребляемому току (Iпотр) рассчитываем сопротивление гасящих резисторов в батарее (принимаем большее из стандартного ряда):

R = 430 / Iпотр

Например, у меня потребляемый ток составил 9 мА, значит R = 430 / 0,009 = 47777 Ом (принимаем 47 кОм).

Нагромождение гасящих резисторов выполнено с целью распределения рассеиваемой мощности и уменьшения нагрева. Резисторы должны быть мощностью не менее 0.5 Вт (а лучше по 1 Вт).

Выпрямительные диоды и гасящий резистор перекочевывают из оригинальной схемы, остальное придется докупить. Готовую плату укладываем в корпус гирлянды.

Соединяем платы источника питания и контроллера (провода и вилку берем из оригинальной гирлянды). Не забываем, закрепить припаянные к платам провода горячим клеем, так как провода используемые китайцами, мягко говоря, говно и могут отвалиться в любой момент.

7 Формирование линий светодиодов.

Вот с чем придется повозиться, так это с формированием 12-ти каналов линий светодиодов. Нужно будет из трех жгутов (а в случае трех каналов в гирлянде – четырех жгутов) оригинальных гирлянд собрать общий жгут с двенадцатью линиями (плюс общий провод). Гирлянды нужно не просто скрутить вместе, а позаботиться о том, чтобы светодиоды всех двенадцати каналов располагались последовательно один за другим. Кроме того, в случае если гирлянда разноцветная, нужно позаботится о том, чтобы цвета максимально перемешивались.

Вообще, для лучшей визуализации эффектов лучше подходят одноцветные гирлянды, но для создания более яркого образа разноцветные гирлянды, пожалуй, выигрывают. Тут Вы должны определится или более выразительные эффекты или более красочное впечатление.

Долго объяснять на словах – посмотрите на рисунки или подумайте сами как вам скрутить жгуты:

Жгуты скручены – теперь их припаиваем к контроллеру таким образом чтобы светодиоды каналов шли друг за другом последовательно.

8 Описание работы гирлянды.

При включении гирлянды в сеть, она начинает сразу работать со случайного эффекта. В процессе работы эффекты будут случайно менять друг друга. Если нажимать кнопку, то эффекты последовательно будут сменять друг дружку по очереди:
1 Волна
2 Падающая звезда
3 Искры
4 Медленные переливы
5 Бегущие огни
6 Мерцающие огоньки
7 Все горит-тухнет
8 Все горит
0 Все выключено

При выборе эффекта кнопкой, он задерживается на большее время, но позже эффекты опять начнут сменять друг дружку.

Работа от пульта аналогична работе кнопке на контроллере (нажимаем кнопку на пульте – последовательно меняются эффекты). Для изучения кнопки любого IR-пульта, нужно зажать кнопку на контроллере до момента пока не погаснет гирлянда (порядка 3 секунд), дальше нужно нажать выбранную кнопку на пульте. Код кнопки запишется в энергонезависимую память и гирлянда вернется к эффектам. Так как код хранится в энергонезависимой памяти, гирлянда будет «помнить» пульт даже после отключения от сети.

Напоследок считаю не лишним напомнить:

ВНИМАНИЕ!
Схема гирлянды гальванически не развязана от сети опасного напряжения 220В!
Прикосновение к любой токопроводящей части включенной в сеть гирлянды
ОПАСНО ДЛЯ ЖИЗНИ!
ПОЭТОМУ:

— если Вы плохо разбираетесь в электричестве — не повторяйте эту конструкцию;
— любые действия (пайка, замеры и т.п.) со схемой нужно производить только отключив от сети;
— программирование микроконтроллера нужно производить или отдельно от платы (например, в специально собранной для этого макетке), или запитав плату гирлянды от внешнего источника напряжения 5 вольт (например, от батареек);
— готовая конструкция должна быть хорошо изолирована и недоступна для маленьких детей и животных;
— будьте внимательны при сборке конструкции!

А вот и примеры, так сказать, вживую:

Присылайте свои — добавлю сюда.

Елка от AndreevKV. Большая получилась! 🙂

Елка от BOYka59 . Все знакомые и особенно дети в восторге от нее)

И еще!

С наступающим Новым Годом!

Всем хорошего настроения и веселых праздников!

Update 1 (2013)

Особо не планировал что-то делать с этой гирляндой, так как времени на это в этом году уже нет, но по просьбам читателей все таки решился на небольшой апдейт!

Изменено немного.
Добавлено 6 новых эффектов:
— бегущая в разные стороны волна из 2х светодиодов
— последовательное заполнение и убывание
— последовательное заполнение и убывание с переменной бегущей волной
— случайное заполнение и удаление
— случайное заполнение и удаление с переменной бегущей волной
— агресивное мерцание
Время работы эффекта при принудительном переключении (пульт или кнопка) увеличено почти вдвое.
Вот собственно и все. Схема и фьюзы остались прежними. Необходимо перезалить новую прошивку.
- 12-ти канальная супергирлянда (апдейт 2013)
- Исходник апдейта супергирлянды

С наступающим, теперь уже, 2014 годом!!! 😉

Варианты супергирлянды от читателей блога

Сергей Черний (Bleck_S)
Гирлянда реализована на одной плате с применением SMD компонентов

ЦМУ/СДУ на микроконтроллере (8 каналов)

Это устройство объединяет в себе цветомузыку (ЦМУ) и светодинамическое устройство (СДУ) на 8 каналов, с множеством световых эффектов. Выходы устройство рассчитаны на подключение достаточно мощной нагрузки.

Разделение частот по каналам ЦМУ чисто программное и очень простое, используется PIC микроконтроллер PIC16F628A. Подсчитывается количество импульсов таймера/счетчика за строго определенный промежуток времени и в зависимости от значения этого счетчика включается тот или иной светодиод.

А вот схема устройства:

Копки позволяют:

  • Выбрать режим - ЦМУ/СДУ. В режиме СДУ даже если есть сигнал на входе работает только основная программа светодинамического устройства. В режиме ЦМУ если нет сигнала то воспроизводиться выбранный эффект СДУ, как фоновый режим.
  • Выбрать эффект СДУ. Кнопка циклически переключает все возможные эффекты светодинамического устройства.
  • Увеличить и уменьшить скорость. Эти кнопки управляют скоростью эффектов СДУ, на ЦМУ никакого действия не оказывают.

Печатная плата односторонняя, достаточно простая. Светодиоды установленные на плате являются отладочными и служат просто как дополнительное устройство визуализации.

В качестве цветных прожекторов я использовал готовые светильники-софиты из хозяйственного магазина. Из них я удалил стандартный патрон под лампочку и установил туда матрицу из 37 ярких светодиодов. Для каждого прожектора свой цвет - красные, зеленые, синие и т.д., все что удалось найти. Прожекторы размещены по углам комнаты и по средним точкам вверху стен и все направлены на центр комнаты. Ночью под музыку смотрится очень впечатляюще, особенно эффект стробоскопа

2, схема

Данный проект светодиодной гирлянды на микроконтроллере хорошо подходит для начинающих. Схема отличается своей простотой и содержит минимум элементов.

Данное устройство управляет 13 светодиодами, подключенными к портам микроконтроллера. В качестве микроконтроллера используется МК фирмы ATMEL: ATtiny231320PI . Благодаря использованию внутреннего генератора, выводы 4 и 5 задействованы как дополнительные порты микроконтроллера PA0,PA1. Схема обеспечивает выполнение 12 про- грамм эффектов, 11 из которых - индивидуальные комбинации, а 12-тая про- грамма – последовательный однократный повтор предыдущих эффектов. Переключение на другую программу осуществляется нажатием на кнопку SB1. Программы эффектов включают в себя и бегущий одинарный огонь, и нарастание огня, и бегущую тень и многое другое.

Устройство имеет возможность регулировки скорости смены комбинаций при выполнении программы, которая осуществляется нажатием на кнопки: SB2 – увеличение скорости и SB3 – уменьшение скорости при условии, что переключатель SA1 находиться в положении "Скорость программы”. Также имеется возможность регулировать частоту горения светодиода (от стабилизированного свечения до легкого мерцания), которая осуществляется нажатием на кнопки: SB2 – уменьшение (до мерцания) и SB3- увеличение при условии, что переключатель SA1 находиться в положении "Частота мерцания”. У переключателя SA2 замкнутое положение соответствует режиму регулировки скорости выполнения программ, а разомкнутое - режиму регулировки частоты горения светодиодов.

Порядок нумерации светодиодов в схеме соответствует их порядку зажигания при выполнении программы. При необходимости вывод RESET может быть использован для сброса, а в качестве порта PA2 он не задействован. В устройстве выбрано при программировании тактовая частота 8 МГц от внутреннего генератора (фузы CKSEL3..0 - 0100).Хотя возможно использование частоты в 4 МГц(фузы CKSEL3..0 - 0010) с соответствующими изменениями временных интервалов работы схемы.

Тип светодиодов, указанный на схеме использовался в опытном образце, для схемы подойдут любые светодиоды с напряжением питания 2-3 вольта, резисторами R1-R17 можно регулировать яркость свечения светодиодов.

Прошивку HEX, а также файлы программы на ассемблере вы можете скачать ниже

Список радиоэлементов

Обозначение Тип Номинал

Магазин
DD1 МК AVR 8-бит

ATtiny2313

1
Поиск в магазине
С1 Электролитический конденсатор 100 мкФ 10 В 1
Поиск в магазине
R1-R17 Резистор

1 кОм

17
Поиск в магазине
LED1-LED13 Светодиод LD571 13
Поиск в магазине
SB1-SB3 Кнопка
3
Поиск в магазине
SA1 Выключатель
1
Поиск в магазине


3, схема

Переключатель елочных гирлянд на основе PIC16C84.


Наиболее подходящей платформой для такого устройства мне представляе-
тся микроконтроллер AT89C2051 фирмы Atmel, AT90S2313 (так же Atmel), ли-
бо PIC16F84 от Microchip. Я выбрал PIC16C84 - исключительно из соображе-
ний применить куда-нибудь устаревший кристалл (к сожалению, для данной
задачи он не очень удобен из-за особенности построения таблиц в програм-
мной памяти).

2. Возможности устройства.

Поддерживает четыре канала управления (используется фазовое управле-
ние тиристорами с дублирование на контрольные светодиоды).

Обеспечивает выбор одной из шестнадцати управляющих программ (однако
сейчас написано всего пять), или последовательное выполнение всех прог-
рамм и ручной выбор скорости (медленно, нормально, быстро) переключения.

3. Управление устройством.

Все управление производится с помощью четырех кнопок:

"<<" - выбор программы, переключиться на предыдущую;
">>" - выбор программы, переключиться на следующую;
При выборе программы ее номер (в двоичном коде) отображается на инди-
каторных светодиодах в двоичном коде, до тех пор, пока нажата кнопка вы-
бора.
"Speed" - переключение скорости выполнения программы, циклически
"normal">"fast">"slow">"normal".
"Demo" - автоматический перебор программ, после выполнения программы
начинается выполнение следующей. Этот режим отменяется при нажатии кноп-
ки "<<" или ">>".

Кроме того, при включении устройства можно выбрать дополнительные ре-
жимы, для чего надо нажать и удерживать кнопку "Demo", и, одновременно
с ней комбинацию из остальных кнопок, каждая из которых определяет сле-
дующие режимы:
"<<" - режим "резкого" включения/выключения, без плавной регулировки
яркости в канале;
">>" - эта кнопка пока зарезервирована для будущего использования;
"Speed" - режим управления тремя каналами, четвертый канал в некото-
рых режимах не использовать (типа "бегущих огней").

4. Конструкция и детали.

В качестве микроконтроллера U1 можно использовать PIC16C84 или
PIC16F84, с любой тактовой частотой. В качестве времязадающего элемента
- кварцевый или пьезорезонатор с частотой 4 MHz, особых требований к
стабильности не предъявляется. Тиристоры (симисторы) - практически лю-
бые, с достаточным запасом по коммутируемому напряжению. Диоды в "сило-
вом" выпрямителе - выбирать с достаточным запасом по току и по обратному
напряжению не менее 400 вольт. Токоограничивающие резисторы в цепи упра-
вляющих электродов тиристоров - рекомендуется выбирать с рассеваемой мо-
щностью не меньше 1 ватта.

Конструкция имеет гальванический контакт с сетью, поэтому металличес-
кие элементы наружного оформления не должны иметь контакта со схемой.
Особенно это относится к кнопкам управления. При налаживании устройства
необходимо соблюдать традиционные меры безопасности.

"Продвинутые" пользователи могут попробовать усовершенствовать управ-
ляющую программу или добавить новые световые эффекты (присылайте, пожа-
луйста, описание или "исходники" новых эффектов автору), программа на-
писана с использованием мнемокодов ассемблера spasm от Parallax inc.,

Штукатурка