Узк сварных швов без валика усиления. Ультразвуковой неразрушающий контроль

Физической основой ультразвуковой дефектоскопии явля­ется свойство ультразвуковых волн отражаться от несплошностей.

Действие приборов ультразвукового контроля основано на посылке ультразвуковых импульсов и регистрации отражен­ных эхосигналов или ослабленных сигналов.

Посылка ультразвуковых импульсов и прием эхо-сигналов производится пьезоэлементами (пьезоэлектри­ческими преобразователями), преобразующими переменное электрическое поле в акустическое поле и наоборот.

В зависимости от типа дефекта ввод ультразвуковых волн осуществляется перпендикулярно или под определенным утлом к поверхности изделия. При контроле толщины стенки трубы и контроле дефектов, параллельных стенке трубы (расслоений, неметаллических включений), ультразвуковые колебания вво­дятся по нормали к поверхности трубы. При ручном контроле для этого используются прямые пьезопреобразователи-искатели. Толщина стенки трубы или расстояние до несплошности определяется путем измерения времени прохождения зонди­рующего (т.е. излучаемого в изделие) импульса от наружной до внутренней поверхности трубы или от наружной поверхности до несплошности и отраженного импульса в обратном направлении (5850 м/с для продольных волн).

Существует несколько методов (схем) ультразвукового контроля. Наиболее распространенным является импульсный эхометод, или просто эхометод. Метод основан на регистра­ции ультразвуковых волн, отраженных от несплошности при импульсном прозвучивании. Амплитуда эхосигнала при этом пропорциональна площади несплошности, служащей отража­телем.

Ультразвуковой контроль проводится для выявления внутренних и выходящих на поверхность протяженных (ими могут быть: непровары, несплавления, трещины, подрезы, цепочки скопления пор и включений) и не протяженных (ими могут быть: одиночные газовые поры, шлаковые включения) дефектов.

Перед проведением контроля следует произвести очистку поверхности от изоляционного покрытия, пыли, грязи, окалины, застывших брызг металла, забоин и других неровностей и нанести контактную смазку.

Контроль сварных соединений осуществляют путем перемещения (сканирования) ПЭП по поверхности околошовной зоны сваренных элементов параллельно сварному шву с одновременным возвратно-поступательным движением в направлении, перпендикулярном ему.

Признаком обнаружения дефекта служит появление на поисковом уровне чувствительности эхо-сигнала на экране дефектоскопа. При появлении признаков обнаружения дефекта следует зафиксировать преобразователь в положении, при котором амплитуда наблюдаемого сигнала максимальна, и определить координаты и параметры дефекта.

Дефекты по результатам ультразвукового контроля относят к одному из следующих видов:


непротяженные (одиночные поры, компактные шлаковые включения);

протяженные (трещины, непровары, несплавления, удлиненные шлаковые включения и поры);

цепочки и скопления (цепочки и скопления пор и шлака - три и более дефекта).

Акустические колебания и волны.

Акустическими волнами называют колебания частичек среды в упругой среде. Различают четыре основных типа волн: продольные, поперечные поверхностные и нормальные волны.

Рис. 18. Продольная волна.

Классификация методов контроля

Известно много акустических методов неразрушающего контроля, некоторые из которых применяются в нескольких вариантах. Классификация акустических методов показана на рисунке 19. Их делят на две большие группы - активные и пассивные методы. Активные методы основаны на излучении и приеме упругих волн, пассивные - только на приеме волн, источником которых служит сам контролируемый объект.

Активные методы делят на методы прохождения, отражения, комбинированные (использующие как прохождение, так и отражение), импедансные и методы собственных частот.

Методы прохождения используют излучающие и приемные преобразователи, расположенные по разные или по одну сторону контролируемого изделия. Применяют импульсное или (реже) непрерывное излучение и анализируют сигнал, прошедший через контролируемый объект.

В методах отражения используют как один, так и два преобразователя; применяют импульсное излучение. К этой подгруппе относят следующие методы дефектоскопии:

Рис. 19. Классификация акустических методов контроля

Эхо-метод (рис. 20, а ) основан на регистрации эхо-сигналов от дефекта. На экране индикатора обычно наблюдают посланный (зондирующий) импульс I , импульс III , отраженный от противоположной поверхности (дна) изделия (донный сигнал) и эхо-сигнал от дефекта II . Время прихода импульсов II и III пропорционально глубине залегания дефекта и толщине изделия. При совмещенной схеме контроля (рис. 20, а ) один и тот же преобразователь выполняет функции излучателя и приемника. Если эти функции выполняют разные преобразователи, то схему называют раздельной.

Рис. 20. Методы отражения:

а - эхо; б – эхо - зеркальный; в - дельта-метод;г - дифракционно - временной; д - реверберационный:

1 - генератор; 2 - излучатель; 3 - объект контроля; 4 - приемник;5 - усилитель; 6 - синхронизатор; 7 – индикатор

Эхо-зеркальный метод основан на анализе сигналов, испытавших зеркальное отражение от донной поверхности изделия и дефекта, т.е. прошедших путь АВСД (рис. 20, б ). Вариант этого метода, рассчитанный на выявление вертикальных дефектов в плоскости ЕF , называют методом тандем . Для его реализации при перемещении преобразователей А и D поддерживают постоянным значение ; для получения зеркального отражения от невертикальных дефектов, значение варьируют. Один из вариантов метода, называемый "косой тандем" , предусматривает расположение излучателя и приемника не в одной плоскости (рис. 20, б , вид в плане внизу), а в разных плоскостях, но таким образом, чтобы принимать зеркальное отражение от дефекта. Еще один вариант, называемый К-метод , предусматривает расположение преобразователей по разные стороны изделия, например, располагают приемник в точке С.

Дельта-метод (рис. 20, в ) основан на приеме преобразователем для продольных волн 4 , расположенным над дефектом, рассеянных на дефекте волн, излученных преобразователем для поперечных волн 2 .

Дифракционно-временной метод (рис. 20, г ), в котором излучатели 2 и , приемники 4 и 4 ¢ излучают и принимают либо продольные, либо поперечные волны, причем могут излучать и принимать разные типы волн. Преобразователи располагают так, чтобы получать максимумы эхо-сигналов волн, дифрагированных на концах дефекта. Измеряют амплитуды и время прихода сигналов от верхнего и нижнего концов дефекта.

Реверберационный метод (рис. 20, д ) использует влияние дефекта на время затухания многократно отраженных ультразвуковых импульсов в контролируемом объекте. Например, при контроле клееной конструкции с наружным металлическим слоем и внутренним полимерным слоем дефект соединения препятствует передаче энергии во внутренний слой, что увеличивает время затухания многократных эхо-сигналов во внешнем слое. Отражения импульсов в полимерном слое обычно отсутствуют вследствие большого затухания ультразвука в полимере.

В комбинированных методах используют принципы как прохождения, так и отражения акустических волн.

Зеркально-теневой метод основан на измерении амплитуды донного сигнала. На рисунке 21, а отраженный луч условно смещен в сторону. По технике выполнения (фиксирует эхо-сигнал) его относят к методам отражения, а по физической сущности контроля (измеряют ослабление сигнала дважды прошедшего изделие в зоне дефекта) он близок к теневому методу.

Эхо-теневой метод основан на анализе как прошедших, так и отраженных волн (рис. 21, б ).

В эхо-сквозном методе фиксируют сквозной сигнал I , сигнал II , испытавший двукратное отражение в изделии, а в случае появления полупрозрачного дефекта - также сигналы III и IV , соответствующие отражениям волн от дефекта и испытавших также отражение от верхней и нижней поверхностей изделия. Большой непрозрачный дефект обнаруживают по исчезновению или сильному уменьшению сигнала I , т.е. теневым методом, а также сигнала II . Полупрозрачные или небольшие дефекты обнаруживают по появлению сигналов III и IV , которые являются главными информационными сигналами.

Рис. 21. Комбинированные методы, использующие прохождение и отражение: а - зеркально-теневой; б – эхо - теневой; в – эхо - сквозной:2 - излучатель; 4 - приемник; 3 - объект контроля

Методы собственных частот основаны на измерении этих частот (или спектров) колебаний контролируемых объектов. Собственные частоты измеряют при возбуждении в изделиях как вынужденных, так и свободных колебаний. Свободные колебания обычно возбуждают механическим ударом, вынужденные - воздействием гармонической силы меняющейся частоты.

Импедансные методы используют зависимость импедансов изделий при их упругих колебаниях от параметров этих изделий и наличия в них дефектов. Обычно оценивают механический импеданс , где и - комплексные амплитуды возмущающей силы и колебательной скорости, соответственно. В отличие от характеристического импеданса , являющегося параметром среды, механический импеданс характеризует конструкцию. В импедансных методах используют изгибные и продольные волны.

Пассивные акустические методы основаны на анализе упругих колебаний волн, возникающих в самом контролируемом объекте.

Наиболее характерным пассивным методом является акустико-эмиссионный метод. Явление акустической эмиссии состоит в том, что упругие волны излучаются самим материалом в результате внутренней динамической локальной перестройки его структуры. Такие явления, как возникновение и развитие трещин под влиянием внешней нагрузки, аллотропические превращения при нагреве или охлаждении, движение скоплений дислокаций,- наиболее характерные источники акустической эмиссии. Контактирующие с изделием пьезопреобразователи принимают упругие волны и позволяют установить место их источника (дефекта).

Пассивными акустическими методами являются вибрационно-диагностический и шумодиагностический. При первом анализируют параметры вибраций какой-либо отдельной детали или узла (ротора, подшипников, лопатки турбины) с помощью приемников контактного типа, при втором - изучают спектр шумов работающего механизма, обычно с помощью микрофонных приемников.

По частотному признаку акустические методы делят на низкочастотные и высокочастотные. К первым относят колебания в звуковом и низкочастотном (до нескольких десятков кГц), ультразвуковом диапазонах частот. Ко вторым - колебания в высокочастотном ультразвуковом диапазоне частот: обычно от нескольких сот кГц до 20 МГц. Высокочастотные методы обычно называют ультразвуковыми.

Области применения

Из рассмотренных акустических методов контроля наибольшее практическое применение находит эхо-метод. Около 90% объектов, контролируемых акустическими методами, проверяют эхо-методом. Применяя различные типы волн, с его помощью решают задачи дефектоскопии поковок, отливок, сварных соединений, многих неметаллических материалов. Эхо-метод используют также для измерения размеров изделий. Измеряют время прихода донного сигнала и, зная скорость ультразвука в материале, определяют толщину изделия при одностороннем доступе. Если толщина изделия неизвестна, то по донному сигналу измеряют скорость, оценивают затухание ультразвука, а по ним определяют физико-механические свойства материалов.

Эхо-зеркальный метод также применяют для выявления дефектов, ориентированных перпендикулярно поверхности ввода. При этом он обеспечивает более высокую чувствительность к таким дефектам, но требует, чтобы в зоне расположения дефектов был достаточно большой участок ровной поверхности (рис. 21, б ). В рельсах, например, это требование не выполняется, поэтому там возможно применение только зеркально-теневого метода. Дефект может быть выявлен совмещенным наклонным преобразователем, расположенным в точке А. Однако, в этом случае зеркально-отраженная волна уходит в сторону и на преобразователь погадает лишь слабый рассеянный сигнал. Преобразователи, расположенные в точках С или D обнаруживают дефект с высокой чувствительностью.

Эхо-зеркальный метод в варианте "тандем" используют для выявления вертикальных трещин и непроваров при контроле сварных соединений. Дефекты некоторых видов сварки, например, непровар при электронно-лучевой сварке, имеют гладкую отражающую поверхность, очень слабо рассеивающую ультразвуковые волны, но такие дефекты хорошо выявляются эхо-зеркальным методом. Дефекты округлой формы (шлаковые включения, поры) дают большой рассеянный сигнал и хорошо регистрируются совмещенным преобразователем в точке А, в то же время зеркальное отражение от них слабое. В результате сравнения отраженных сигналов в точках А и D определяют форму дефекта сварного соединения.

Вариант "косой тандем" применяют, когда расположение преобразователей в одной плоскости затруднительно. Его используют, например, для выявления поперечных трещин в сварных швах. Преобразователи в этом случае располагают по разные стороны валика усиления шва. Углы и выбирают либо малыми (не более 10°), либо большими (св. 35°) для предотвращения трансформации поперечных волн в продольные. При угле меньше 10° трансформация мала. Угол 35° и больше превосходит третье критическое значение и трансформация отсутствует. Существуют варианты с . Например, излучают поперечную волну с , а принимают трансформированную продольную волну.

Дельта и дифракционно-временной методы также используют для получения дополнительной информации о дефектах при контроле сварных соединений. В варианте, показанном на рисунке 2,в , излучают поперечные, а принимают продольные волны. Эффективная трансформация волн на дефекте произойдет, если угол падения на плоский дефект меньше третьего критического, либо если продольная волна возникает в результате рассеяния на дефекте. Для создания хорошего контакта приемного прямого преобразователя с поверхностью сварного соединения валик усиления зачищают. С помощью этого метода довольно точно определяют положение дефекта вдоль сварного шва, что важно для его автоматической регистрации.

Основы ультразвукового метода. Метод основан на способности ультразвуковых колебаний отражаться от поверхности внутренних неоднородностей среды.

Ультразвуковые колебания (УЗК) представляют собой упругие колебания с частотой, лежащей выше предела слышимости.

Обладая всеми свойствами звуковых колебаний, УЗК благодаря повышенной частоте имеют и некоторые специфические свойства: с повышением частоты увеличивается направленность УЗК и при частотах порядка мегагерц угол раскрытия пучка УЗК столь мал, что к нему можно применить понятие «ультразвуковой луч». Это оправдывается и тем, что законы распространения УЗК (преломление, отражение, дифракция) аналогичны законам геометрической оптики.

Благодаря своей направленности, способности проникать в металл на большую глубину и высокому коэффициенту отражения от границы металл - воздух УЗК могут быть применены для выявления дефектов в металлах.

Методика контроля импульсным эхо-методом. Контролю удобнее подвергать полуфабрикаты и детали несложной формы (плоскопараллельные и тела вращения). Поверхности детали, с которых предполагается проводить прозву-чивание, следует обработать со степенью чистоты, соответствующей чистовой обточке на токарном станке, и смазать тонким слоем минерального масла.

Выбор рабочей частоты УЗК зависит в основном от следующих факторов: а) чистоты обработки поверхности; б) величины зерна; в) наличия в металле мелкой рассеянной пористости; г) наличия в сплаве структурных составляющих, резко отличающихся по упругим свойствам и плотности от основы, например графит в чугуне, свинец в свинцовистой бронзе и др.

Чем выше частота, тем более мелкие дефекты и неоднородности могут быть обнаружены; однако с повышением частоты затрудняются ввод УЗК в металл и расшифровка показаний, поскольку мелкие неоднородности металла, не являющиеся достаточно серьезными дефектами, при высоких частотах дают свои эхо-сигналы.

Практика показывает, что большая часть задач, возникающих в производственных условиях, решается.при пользовании частотами от 0,5 до 5,0 Мгц.

Для проведения контроля искательные головки прикладывают к поверхности изделия и, постепенно перемещая их, наблюдают за экране. При этом можно осуществить надежный контроль изделия на наличие дефектов и определить их координаты.

Одним из наиболее универсальных дефектоскопов является прибор типа В4-7И. Он работает на частотах 0,7; 1,5; 2,5 и 4,0 Мгц с одной совмещенной или с двумя раздельными головками с пьезоэлементами из кварца и титаната бария. Прибор позволяет с помощью специального электронного устройства «лубинномера» определять расстояние от поверхности ввода УЗК до отражающей поверхности.

Контроль внутренних дефектов осуществляется путем ввода УЗК в изделие и регистрации отраженных волн.

1. дефект; 2. изделие; 3. акустический преобразователь; 4. генератор импульсов; 5. блок усиления и развертки; 6. электроннолучевая трубка.

Импульс: А – зондирующий импульс; В – донный эхо импульс; С – эхо импульс дефекта; X – толщина изделия; X Д – глубина залегания дефекта.

Электрический сигнал от генератора импульса 4 поступает на электроакустический преобразователь 3, где он преобразуется в УЗК и электронно лучевую трубку на которой формируется начальный зондирующий импульс А УЗК – пройдя расстояние X (толщина изделия) отражается от противоположной стороны поверхности изделия и вновь воспринимаются преобразователем в котором преобразуются в электрический сигнал. Сигнал проходя через блок усилителя и развертки поступает на экран т. е. где формируется донный эхо импульс В. Отраженный от дефекта УЗК формируют эхо импульс С.

Чувствительность и область применения. Импульсным ультразвуковым методом удается выявлять дефекты весьма малых размеров (площадью в несколько квадратных миллиметров) на глубине до нескольких метров в изделиях не-сложной формы. В ряде случаев могут быть выявлены дефекты сварного шва.

Контролю могут подвергаться детали значительных габаритов - порядка нескольких метров. При этом, однако, следует помнить, что чувствительность метода быстро падает с увеличением глубины залегания дефекта - при прочих равных условиях глубоколежащие дефекты обнаруживаются лишь в случае, если отражающая поверхность их достаточно велика. Кроме того, чувствительность метода ограничена также и по минимуму - в непосредственной близости от поверхности ввода УЗК (на глубине 3-6 мм) дефекты не могут быть обнаружены из-за наложения отраженного от дефекта эхо-сигнала на посылаемый («мертвая зона»).

Применение метода затруднительно также при сложности формы изделия (фасонное литье), грубой поверхности, резкой гетерогенности сплава.

Контроль поверхностных и подповерхностных дефектов возможен благодаря возбуждению в неконтролируемом изделии.

Схема эхоимпульсного контроля.

1-1.́ – поверхностные дефекты; 2. – изделие; 3. – электроакустический преобразователь; А – зондирование импульса; В – торцовой импульс; С – эхоимпульс от дефекта 1; С́ – эхоимпульс от дефекта 1́

Поверхностная волна проходит вдоль всего изделия, отражается и возвращается в виде эхосигнала на преобразователь. При эхо методе в изделии имеется часть объема в котором дефекты не выявляются. Это так называемая мертвая зона. Если на этом участке расположен дефект выявить его практически невозможно т. к. сигнал от него С́ сливается с зондирующим сигналом А.

Автоматизация контроля при контактном способе ввода УЗК в изделие (через тонкий слой контактной смазки) может быть осуществлена с помощью автоматических сигнализаторов дефекта. Однако наибольший эффект.автоматизация дает при работе по иммерсионному варианту импульсного эхо-метода , который к тому же позволяет в значительной степени преодолеть затруднения, связанные со сложностью формы и наличием грубой поверхности.

При работе по этому варианту искательные головки и контролируемое изделие полностью погружены в жидкость (большей частью - вода, иногда масло), причем зазор между искательной головкой и поверхностью изделия составляет несколько сантиметров.

Использование такого погружения представляет особые выгоды. Это связано прежде всего с тем, что отпадают проблемы акустического контакта и износоустойчивости искательных головок; контакт получается постоянным и весьма надежным, в результате чего теряет свое значение донный сигнал как основной индикатор надежности акустического контакта и появляется возможность ввода УЗК в изделие под любым углам к поверхности. Вследствие этого можно снизить требования к чистоте обработки поверхности изделия, так как колебания вводятся достаточно эффективно в изделие с грубой поверхностью (например, в необработанную поковку). При достаточной мощности зондирующего импульса можно поэтому использовать УЗК значительно более высоких частот - порядка 20-25 Мгц, что в свою очередь приводит к повышению чувствительности и разрешающей способности метода. При иммерсионном варианте значительно облегчается запись показаний дефектоскопа, а применение в осциллоскопическом индикаторе электронно-лучевой трубки с большой длительностью послесвечения и развертки позволяет видеть на экране изображение контуров контролируемого изделия и дефектов в прозвучиваемом сечении.

Теневой метод

Основан на уменьшении амплитуды прошедшей волны под влиянием дефекта осуществляется путем ввода УЗК в деталь и регистрации прошедших через нее ультразвуковых волн с противоположной стороны строго против места ввода.

Рис. 1. Схема УЗК теневым методом 1. – дефект; 2 – тело; 3. – электроакустические преобразователи; 4 – генератор импульса; 5 – блок усиления и развертки

А – зондирующий импульс; А x – импульс после выхода из изделия; А д – импульс при наличие дефекта.

На контролируемое изделие с двух сторон устанавливается электроакустические преобразователи. К верхнему зондирующему преобразователю от генератора подается электрический сигнал, который преобразуется вУЗКолебания. При прохождении УЗК через изделие интенсивность колебания из-за рассеивания и поглощения будет уменьшаться. Поэтому на экране ЭЛТ будут видны 2 импульса. Слева зондирующий, ас права с амплитудой А x соответствующий интенсивности УЗК после выхода из изделия.

Для контроля требуется доступ к изделию с обеих сторон. Ввод УЗК в изделие обычно осуществляется через жидкость, т. е. иммерсионным методом.

В настоящее время теневой метод используется главным образом для контроля качества металлических изделий простей формы (листы, многослойные диски, трубы, подшипники).

Одним из направлений деятельности испытательной лаборатории ЗАО "ЛСЦ ПИИ МИКРО" является ультразвуковой контроль сварных соединений. Наши опытные специалисты проводят процедуру быстро и в соответствии с установленными требованиями.

Название услуги Цена
Определение прочности бетона (раствора) в конструкциях методами неразрушающего контроля (упругий отскок; ударный импульс; ультразвуковой) по ГОСТ 22690-88; ГОСТ 17624-2012 (один участок). 650 руб.
Определение глубины распространения трещин в бетоне ультразвуковым методом (одно измерение). 500 руб.
Ультразвуковая дефектоскопия (контроль) (УЗК), визуальный и измерительный контроль (ВИК) качества сварных соединений (швов) металлоконструкций и трубопроводов по СНиП 3.03.01-87; ГОСТ Р 55724-2013 (1 метр УЗК и 10 метров ВИК длины контролируемого участка). от 2 до 5 м- 7500 руб.
от 5 до 10 м- 5000 руб.
от 10 до 20 м- 3500 руб.
от 20 до 40 м- 2500 руб.
от 40 до 60 м-.1500 руб.
от 60 до 100 м-1000 руб.
от 100м и выше-500 руб.
Ультразвуковой и визуальный контроль качества (дефектоскопия) сварных соединений арматуры по ГОСТ 23858-79 (один стык). от 10 до 30 шт- 1500 руб.
от 30 до 60 шт-1000 руб.
от 60 до 100 шт-500 руб.
от 100 и выше-300 руб.
Ультразвуковой метод определения толщины стенок металлоконструкций и трубопроводов при одностороннем доступе с учетом коррозии металла по ГОСТ Р 55724-2013 (одно измерение). 700 руб.
Рассчитать стоимость работ

Особенности и суть используемой методики

Ультразвуковой контроль позволяет выявить поверхностные и скрытые дефекты сварных швов

Ультразвуковой контроль сварных соединений (дефектоскопия, УЗК) является популярным методом неразрушающего контроля. Он является обязательным.

Ультразвуковой контроль представляет собой экспертизу, которая способна в кратчайшие сроки выявить:

  • износ изделий,
  • поверхностные или внутренние дефекты металлов и сплавов,
  • качество изделия или отдельного сварного шва.

Суть методики заключается в обработке объекта ультразвуком. При контроле сварных соединений колебания последовательно излучаются в изделие. После этого они воспринимаются в качестве отраженной волны специальным оборудованием (дефектоскопом).

Полученные результаты анализируются.

В результате специалист может:

  1. Детализировать размеры дефекта.
  2. Определить вид повреждения, классифицируя его как протяженный или точечный.
  3. Установить форму дефекта (объемный или плоскостной).
  4. Выяснить глубину залегания деформации и решить другие задачи.

Ключевые параметры изъяна определяются в ходе ультразвуковой методики по времени распространения ультразвука внутри материала, из которого изготовлено изделие.

Традиционно ультразвуковой контроль сварных соединений проводится в диапазоне от 0,5 до 10 МГц. Специалисты могут выявить большое количество различных дефектов в изделиях из металла и целых строительных конструкциях. В некоторых случаях ультразвуковой контроль сварных швов выполняется импульсами с частотой до 20 МГц. При использовании данной методики можно обнаружить даже самые незначительные изъяны.

Низкочастотный контроль проводится для проверки объектов, обладающих значительной толщиной (отливка, поковка и др.), а также для оценки металлов с крупнозернистой структурой (медь, аустенитная сталь, чугун) и плохим проведением ультразвуковых импульсов.

С помощью проведения ультразвуковой экспертизы можно с легкостью определить такие дефекты сварного соединения, как:

  • трещины в зоне рядом со швом,
  • поры,
  • непровар,
  • расслоения металла,
  • некачественность шва,
  • свищи,
  • коррозия,
  • участки с искажением размера и несоответствием химического состава,
  • провисание металла в нижней зоне шва.

Исследование сварного соединения можно проводить в таких металлах, как:

  • медь,
  • легированные и аустенитные стали,
  • чугун и др.

Проверкам подвергаются следующие разновидности швов:

  • плоские,
  • продольные,
  • кольцевые.

Также оцениваются:

  • тавровые соединения,
  • сварные стыки,
  • сварные трубы.

Геометрические рамки УЗД

  1. Максимальная глубина залегания сварного соединения: 10 метров.
  2. Минимальная глубина сварных швов: 3-4 мм.
  3. Минимальная толщина шва: 8-10 мм (зависит от прибора).
  4. Максимальная толщина металла: 500-800 мм.

Основные методы УЗК

  1. Теневой метод. Данная методика заключается в контроле уменьшения амплитуды колебаний отраженного и прошедшего импульсов.
  2. Зеркально-теневой метод. При таком способе дефекты швов обнаруживаются по коэффициенту затухания отраженного ультразвукового колебания.
  3. Эхо-зеркальный метод. Данный способ, который также называют “Тандем”, заключается в использовании двух ультразвуковых аппаратов. Они работают одновременно и устанавливаются с одной стороны объекта. Сгенерированные колебания отражаются на приемник
  4. Дельта-метод. Основывается на контроле ультразвуковой энергии, которая отражается от дефекта.
  5. Эхо-метод. Данная методика основана на регистрации ультразвукового сигнала, который отражается от дефекта.

Отметим, что существуют и другие методики проведения экспертизы. Но именно вышеперечисленные являются самыми популярными. Они зарекомендовали себя благодаря простоте реализации и высокой эффективности.

Достоинства и недостатки УЗК

Ультразвуковая методика отличается множеством достоинств.

В их числе:

  1. Абсолютная безопасность для персонала. Ультразвуковые волны в отличие от рентгеновского излучения не наносят вреда человеку, который занимается контролем.
  2. Возможности использования методики на действующих объектах. При этом их не нужно выводить из эксплуатации даже на короткий срок.
  3. Мобильность. Современные УЗ-дефектоскопы являются портативными. Их можно использовать там, где необходимо. Приборы не занимают много места и отличаются относительно небольшим весом.
  4. Отсутствие риска повреждения исследуемого объекта. Изделия не разрушаются в ходе контроля.
  5. Невысокая стоимость. Ультразвуковой контроль доступен для многих организаций. Благодаря этому методика приобретает все большую популярность.
  6. Высокая точность и скорость проведения экспертизы сварных швов. На время исследования не нужно останавливать производство. Экспертиза может проводиться очень быстро. При этом ее результаты вы получите тут же.

К сожалению, метод не лишен недостатков.

К ним относят:

  1. Невозможность получения точных размеров дефектов. Одинаковые по размеру и форме изъяны, заполненные шлаком и воздухом, способны отражать импульсы по разному. Из-за этого при контроле могут возникать ошибки.
  2. Отсутствие возможности оценить все изъяны. Ультразвуковой контроль выявляет не 100% дефектов.
  3. Сложность анализа некрупных деталей небольшой толщины. Также усложняется процедура контроля швов на объектах сложной формы с криволинейной геометрией.
  4. Необходимость в подготовке металлических поверхностей. Перед контролем необходимо очищать изделия от ржавчины, окалины и иных загрязнений.
  5. Затрудненность исследования металлов с высокой зернистостью. Это связано с тем, что они способны "глушить" ультразвук.
  6. Необходимость в покрытии контролируемого участка специальным контактным составом. Обычно используются глицерин, машинное масло или особый гель. Данные составы обеспечивают оптимальный акустический контакт.

Несмотря на имеющиеся недостатки методика контроля является наиболее надежной. Она позволяет выявить многочисленные дефекты. Безусловно, операцию должны проводить специалисты. Только они способны грамотно истолковать результаты экспертизы и предоставить их вам.

Как проводится УЗК?

Ультразвуковой дефектоскоп позволяет детализировать размеры дефекта сварного соединения

  1. Удаление краски и ржавчины со сварочных швов. Операция проводится с обеих сторон на расстоянии 50-70 мм от соединения.
  2. Обработка поверхности металла около шва и самого шва специальным составом (маслом, глицерином и др.). Данная процедура позволяет существенно повысить точность результата дефектоскопии.
  3. Настройка прибора. Данная операция проводится по определенному стандарту. Он определяется в соответствии с конкретной задачей ультразвуковой дефектоскопии.
  4. Перемещение искателя вдоль шва (зигзагообразно).
  5. Максимальное разворачивание искателя при появлении устойчивого сигнала на экране прибора.
  6. Фиксация обнаруженных дефектов и их координат.
  7. Занесение данных проверки в специальную таблицу. По ней в дальнейшем вы сможете быстро обнаружить дефект и устранить его.

Важно! В России особенности экспертизы зафиксированы в ГОСТ Р 55724-2013. В данном государственном стандарте в полном объеме рассмотрены методики исследования различных типов швов, выполненных с использованием многочисленных способов сварки. Также в стандарте описаны стандартные образцы (эталоны), которые применяются для профессиональной настройки дефектоскопа.

Также различными нормативными документами устанавливаются и объемы экспертизы, а также используемые нормы оценки швов. В организациях, которые производят особо ответственные изделия, могут применяться собственные методические материалы. Они проверяются Ростехнадзором и иными контролирующими органами.

Основа безопасной эксплуатации

Дефектоскопия сварных соединений должна выполняться своевременно. Только в этом случае вы сможете предотвратить возникновение аварийных ситуаций.

К сожалению, многие вспоминают о необходимости использования УЗК только на финальной стадии производства. Однако это недопустимо.

Оценка сварных швов должна проводиться не перед пуском трубопровода или сдачей строительного объекта, а сразу же после подготовки конструкций и их отдельных элементов. Только в этом случае можно гарантировать правильную эксплуатацию объекта.

Не стоит рисковать и полностью отказываться от экспертизы сварных швов. Безответственный подход может стать причиной роста аварийности и даже возникновения настоящей техногенной катастрофы.

Также не следует доверять экспертизу неспециалистам. Они способны допустить ошибки, пропустить серьезный дефект. При этом компании-"однодневки" часто не несут никакой ответственности за проделанную работу.

Обратитесь к специалистам испытательной лаборатории "МИКРО"! Они являются настоящими профессионалами в ультразвуковом контроле. Все операции проводятся опытными мастерами в соответствии с установленными стандартами и требованиями.

Исследования в компании «Микро»: основные преимущества

  1. Внушительный опыт специалистов. Мы регулярно проводим оценку качества различных строительных конструкций и соединений. Специалистами оцениваются важнейшие параметры металлов.
  2. Доступность услуг. Мы не завышаем стоимость контроля. Благодаря этому к нам могут обращаться представители различных организаций, а также индивидуальные предприниматели.
  3. Соответствие работ установленным требованиям и наличие необходимых свидетельств и лицензий. Мы выполняем все проверки с соблюдением норм и правил. Это позволяет гарантировать предоставление не только объективных, но и абсолютно легальных результатов. Полученный вами результат экспертизы может быть предоставлен в различные контролирующие организации.
  4. Высокая скорость решения задач. Любые проверки металлических соединений проводятся в кратчайшие сроки. Уточнить время выполнения процедуры вы можете еще до ее начала.
  5. Предоставление профессиональной поддержки на любых этапах работ. Интересует стоимость работ? Хотите уточнить особенности проведения экспертизы? Наши специалисты ответят на все вопросы.

Обращайтесь! Быстро, грамотно и по выгодной стоимости мы проведем оценку металлических соединений. Это позволит вам обрести уверенность в высоком качестве выполненных работ и снизить многочисленные риски.

В зависимости от длины сварных швов скидки до 50%!!! ЗВОНИТЕ!!!

Сварные соединения и швы требуют постоянного контроля качества, вне зависимости от давности установки. Проверка производится с помощью различных методов, наиболее точным является ультразвуковой контроль. Методика проверки сварных швов используется с начала прошлого столетия, пользуется популярностью ввиду точных показателей, выявления малейших недочетов. Как показывает практика, внутри сварочного шва могут быть скрытые дефекты, которые напрямую влияют на качество соединения, ультразвуковая дефектоскопия помогает выявить мельчайшие детали, недостатки.

Ультразвуковой метод и его технология

Технология ультразвукового контроля используется производством, промышленностью с момента развития радиотехнического процесса. Эффект и устройство технологии в том, что ультразвуковые волны акустического типа не меняют прямолинейную траекторию движения при прохождении однородной среды. Ультразвуковой метод используется также при проверке металлов и соединений, имеющих различную структуру. Такие случаи подразумевают, что происходит частичный процесс отражения волн, зависит от химических свойств металлов, чем больше сопротивление звуковых волн, тем сильнее воздействует эффект отражения.

Дефектоскопия или ультразвуковой контроль не разрушают соединения по структуре. Технология проведения ультразвуковой диагностики включает поиск структур, не отвечающих по химическим или физическим свойствам показателям, любые отклонения считаются дефектом. Показания колебаний рассчитываются по формуле L=c/f, где L описывает длину волны, Скорость перемещения ультразвуковых колебаний, f частоту колебаний. Определение дефекта происходит по амплитуде отраженной волны, тем самым возможно вычислить размер недочета.

Сварные соединения подразумевают работу с наличием газовых ванн, испарения которых не всегда успевают удалиться в окружающую среду. Ультразвуковой метод контроля позволяет выявить газообразные вещества в сварных соединениях, за счет сопротивления волн. Газообразная среда веществ обладает сопротивлением в пять раз меньшим по отношению к кристаллической решетке металлических материалов. Ультразвуковой контроль металла позволяет вывить среды за счет отражения колебаний.

Получение и свойства ультразвуковых колебаний

Акустические волны или ультразвуковые колебания выдаются при частоте, превышающей параметр 20 кГц. Механические колебания, способные рассеиваться при упругих, твердых средах, диапазон, как правило, составляет 0,5 – 10 МГц. Распространение волн структурой металла происходит акустическими ультразвуковыми волнами, воздействующими на равновесие центральной точки.

Существуют несколько способов ультразвукового неразрушающего контроля, наиболее распространенный из них пьезоэлектрический. Заряженная электричеством с определенной частотой пластинка вибрирует, механические колебания передаются в окружающую среду при состоянии волны. Генераторы электро волны используется вне зависимости от предназначения, размеров оборудования, могут выдавать различные параметры.

Скорость обращения ультразвукового контроля напрямую зависит от свойств, типа физической среды. Скорость распространения продольной волны вдвое выше, чем поперечной. Прием информации происходит пластиной из пьезоэлектрического элемента, работающей на преобразование энергии в импульсную энергию. Процессом применяются короткие переменные импульсы различного типа колебаний, что позволяет определить глубину, свойства дефекта.

На границе разделения двух сред, результатом падения продольной акустической волны при наклонном типе является появление отражения и трансформации ультразвуковых волн. Существуют основные типы контроля:

  • отраженные;
  • преломлённые;
  • сдвиговые поперечные;
  • продольные волны.

Процесс происходит путем разделения падающей под углом волны на поперечную и продольную, распространение которых производится непосредственно материалом.

Существует определенное значение угла подачи, направления ультразвуковых колебаний, при нарушении которого, ультразвуковой контроль не будет распространяться вглубь металла, а останется на его поверхности. Данный метод используется при определенных параметрах и задачах, волна двигается только по поверхности материала, что позволяет контролировать качество сварного шва.

Виды ультразвукового контроля

Операция контроля сварного шва позволяет определить расстояние до дефекта по временной шкале распространения отражения, размер амплитуды, ширины акустической волны.

В настоящем времени существует несколько способов, которыми проводится ультразвуковой контроль, основанием служит ГОСТ-23829, основные отличия происходят в оценке, регистрации данных:

  1. Диагностика теневым методом производится с использованием двух инструментов, установленных по разные стороны материала. Предназначение первого – излучать волны, второго принимать. Устанавливаются по перпендикулярной плоскости исследуемого сварного соединения. Процесс происходит путем излучения, контроля приема отражений, при тех случаях, когда возникает глухая зона, это означает, что результатом соединении имеется участок другой среды, шов принимается дефектным участком.
  2. Эхо — импульсный метод применяет один дефектоскоп, параметрами которого обусловлено направление, прем ультразвукового контроля. Технология отражения происходит путем отсвечивания отражения от участков с дефектами. Когда допускается прохождение волн напрямую, участок считается нормальным, если происходит отражение, возврат волны к дефектоскопу, это место помечается как дефект.
  3. В эхо — зеркальном методе используется такой же принцип работы, что и способом, приведенным выше. Отличительной особенностью является применение отражателя. Устанавливается оборудование под прямым углом, волны посылаются к материалу, в случае наличия повреждений отражаются на приемник. Данный тип проверки зачастую используют при поиске трещин, других вертикальных дефектов.
  4. Симбиоз зеркального и теневого метода контроля использует два прибора. Оба устанавливаются с одной стороны объекта, посылаются косые волны. Отражение происходит от сетки основного металла, в случае выявления нестандартных зон, место маркируется как дефект.
  5. В основе дельта метода ультразвукового контроля происходит излучение дефектом направленных отражений внутрь сварного шва. Волны разделяются на подкатегории зеркальных, трансформируемых, продольных и поперечных, приемником удается поймать не все типа волн. Метод не славится популярностью, т.к. требует настройки оборудования, продолжительной расшифровки результатов. Также при контроле дельта методом предъявляются жесткие требования по качеству очистки сварного соединения.

Наиболее популярными являются теневой и эхо – импульсный методы, остальные реже ввиду требуемой настройки оборудования и неудобного использования инструментов.

Как проводится ультразвуковая дефектоскопия

Процесс проверки ультразвуковым оборудованием относится практически ко всем типам металлов, чугуне, меди, стали и других легированных соединениях.

Существует определенный стандарт выполнения проверочных работ, которому необходимо придерживаться:

  • зачищается ржавчина, лакокрасочное покрытие со шва на расстоянии 5-7 см;
  • для получения достоверных результатов при ультразвуковом контроле сварных соединений, поверхности необходимо обработать турбинным, трансформаторным, либо машинным маслом;
  • контролер или прибор подстраивается под определенные параметры проверки;
  • стандартные настройки применяются при толщине сварного шва не более 2 см;
  • более толстые детали требуют применения АРД диаграмм;
  • проверка качества шва выполняется с помощью AVG или DSG параметров;
  • излучатель аппарата ультразвукового контроля перемещается вдоль шва зигзагом, проворачивается вокруг своей оси на небольшой угол;
  • искатель проводится по материалу до выявления максимально четкого, устойчивого сигнала, после чего разворачивается для поиска максимальной амплитуды;
  • контроль, проверку ультразвуковой дефектоскопии сварных швов производят согласно ГОСТу;
  • отклонения, дефекты прописываются в регистрационную таблицу.

Сварочные швы основываются на контроле, достаточным проверкой УЗД. При соответствующей квалификации оператора, правильно настроенном оборудовании, возможно получить исчерпывающий ответ о наличии дефектов. При тех случаях, когда применяются более подробные исследования сварных швов, используют гамма — дефектоскопию или рентгенодефектоскопию. Рамки применения теневого метода ультразвуковой дефектоскопии и других способов существуют, основные дефекты, которые возможно выявить с помощью УЗД:

  • расслоения наплавленного метала, различные поры;
  • трещины, неровности шва, а также не проваренные участки;
  • не сплавления, дефекты свище образного происхождения;
  • поврежденные окислами и коррозией участки, провисание металла;
  • несоответствующий химический состав соединения, поврежденный геометрически размер.

Ультразвуковой диагностике подвержены различные типы швов, плоские, продольные, кольцевые, сварные трубы и стыки, а также тавровые соединения. Методика проверки швов применяется не только крупными производственными предприятиями, а также на строительных площадках, при возведении помещений. Чаще всего УЗД используется:

  • в определении степени износа труб в магистралях, сварных соединений;
  • диагностика агрегатов, материалов в аналитических целях;
  • машиностроение, нефтегазовая, тепловая, химическая и атомная промышленности требуют использование технологии при обеспечении безопасности эксплуатации будущего изделия;
  • в соединениях сварного типа с крупнозернистой структурой, сложной геометрией;
  • установка и соединение изделий, подверженных крупным физическим, температурным нагрузкам, потребует проверки ультразвуковым контролем.

К работе с дефектоскопом допускаются лица, имеющие удостоверение, ознакомленные с правилами техники безопасности. Сварные стыки могут находиться в замкнутых пространствах, на высоте, труднодоступных местах, перед работой оператор проходит дополнительный инструктаж, работа контролируется отделом охраны труда. Работа производится с заземленным аппаратом, сечением провода не менее 2.5 мм. Категорически запрещается использовать оборудование вблизи сварочных работ в отсутствие специальной защиты.

Параметры оценки результатов

Аппарат настраивается путем определения наименьшего размера дефекта на эталонной детали. В роли эталонов выступают расположенные перпендикулярно направлению прозвучивания отверстия плоскодонного типа. Используются эталонные детали также с боковыми прорезями, зарубками.

Минимальным расстоянием между дефектами обуславливается разрешающая способность для эхо – метода, это делается, чтобы определить несколько различных дефектов.

Оценка качества сварных соединений при ультразвуковом контроле происходит по следующим параметрам:

  • условная протяженность;
  • ширина, высота дефекта, а также его форма;
  • амплитуда звуковой волны.

Длинна сварного дефекта определяется расстоянием перемещения излучателя по отношению к зафиксированному показанию сигналов с прибора. Способ определяется также для определения ширины дефекта. По разнице времени излученной, отраженной форме волны от дефекта определяется высота дефекта.

Определение точного значения дефекта при ультразвуковой проверке практически невозможно. Именно поэтому, за основу берется площадь эталонного изделия. Максимально допустимыми параметрами являются эквивалентные величины, которые сопоставляются с эталоном. Стоит учитывать, что вычисленная площадь, практически во всех случаях, меньше настоящего размера.

Результаты дефектоскопии ультразвукового типа оформляются в специально отведенном журнале, согласно ГОСТ-14782. При регистрации проверки в обязательном порядке проставляются:

  • индексы и наименование типа сварного стыка, длина подверженного контролю шва;
  • техническое задание, условие, при которых производилась проверка;
  • тип, наименование устройства;
  • частота колебаний в ГЦ;
  • условная, предельная чувствительность, углы ввода в металл, а также тип искателя;
  • результаты, дата проверки, а также фамилия оператора.

К описанию характеристик в журналах при проверке применяются сокращения. Прописная буква А указывает на то, что дефект и его протяженность не переступает технические условия. Буквы Б, В характеризуют протяженность дефекта по нарастающей. Цифрами следом обозначается количество дефектов, их размеры, глубину.

Определение формы дефекта происходит за счёт специальной методики, основой данных является эхо-сигнал, отображаемый дефектоскопом. Точность показаний определяется квалификацией оператора, его внимательностью, тщательность проведения. Измеряемые показатели должны быть в соответствии с инструкцией.

Достоинства и недостатки ультразвукового контроля труб

Ультразвуковым контролем возможно определить несоответствия во всех видах соединений, пайке, склейке, сварки и т.к. Процедура позволяет выявить большое количество недочетов:

  • поры, воздушные пустоты;
  • околошовные трещины, шлаковые отложения;
  • неоднородные химические вкрапления;
  • расслоения слоями наплавленного металла.

Основными преимуществами проведения неразрушимой акустической дефектоскопии являются:

  • возможность проверки соединений как разнородных, так и однородных металлов, материалов;
  • оценка качества соединения материалов, состоящих из неметаллов;
  • отсутствие разрушения, повреждения поверхности шва, после проверки обследуемый участок необходимо только закрасить;
  • отсутствие опасных воздействий на организм человека в сравнении с радио или рентген дефектоскопией.
  • Низкая себестоимость, высокая мобильность позволяют проводить контроль швов практически при любых полевых условиях.

Проведения работ со сложным оборудованием требует обученного, опытного персонала. Ультразвуковой контроль швов не исключение, а также требуется подготовка сварного шва по определенным показателям:

  • Контроль за создание шероховатости не ниже 5 класса, направление полос должно быть перпендикулярно направлению шва;
  • Исключение появления воздушного зазора путем нанесения масел или воды, в случае проверти вертикальной поверхности применяется густые массы и клейстеры.

Каждый из способов проверки имеет недостатки, проверка КЗД металлов не исключение. К основным отрицательным сторонам можно отнести:

  • При диагностике круглых изделий радиусом менее 10 см, необходимо применять специальные преобразователи пьезоэлектрического типа, радиус кривизны подошвы которых отличается от объекта на 10 процентов в большую или меньшую сторону;
  • Крупнозернистые структуры толщиной более 60 мм сложно диагностировать, в связи с затуханием отражения, рассеиванием колебаний при контроле. Такие материалы обычно состоят из аустенита или чугуна.
  • Малые изделия, детали со сложными конструктивными особенностями не возможно подвергнуть проверке УЗД;
  • Сложный процесс оценки, проверки материалов из неоднородных сталей;
  • Расположение в структуре шва дефекта на различной глубине, не дает возможности точно определить диаметр, высоту неровности.

Для проверки понадобится дефектоскопы и преобразователи, набор эталонов, образцов, предназначенных для калибровки и настройки оборудования. Определение расположения, места дефектов производится с помощью линейки координатного типа, вспомогательные приспособления понадобятся для зачистки, смазки проверяемого шва.

Проверенный сварной шов гарантирует надежность, прочность конструкции при эксплуатации. Существуют определенные нормативы, по которым изделие вводится в эксплуатацию или дорабатывается дальше.

В особенности проверка применяется в тяжелых условиях использования приспособлений.

Метод ультразвуковой дефектоскопии сварных швов применяется с 1930 года. С тех пор разработаны различные способы эхолокации. Они выявляют нарушение целостности диффузного слоя, соответствие наплавки основному металлу по химическому составу, выявляются шлаковые включения, оксидные примеси. Процедура УЗД (ультразвуковой диагностики) по точности результатов сопоставима с рентгеном, радиолокацией. Прибором выявляют самые мелкие дефекты, снижающие прочность соединений.

Среди неразрушающих методов контроля швов ультразвуковой стал самым доступным и эффективным, поставлен на поток. Результаты проверки работы сварщика заносятся в специальный журнал. Область применения ультразвукового контроля сварных соединений ограничена только геометрическими параметрами свариваемых деталей. Диагностируют швы трубопроводов, сосудов высокого давления, металлоконструкций, испытывающих большую нагрузку.

Физическая основа метода ультразвукового контроля сварных швов основана на способности ультразвука отражаться от границы раздела сред. Ультразвук – упругие механические колебания, получаемые различными методами. Они находятся за пределами слышимости. Вредного воздействия на уши оператора-контролера излучатели не оказывают.

Ультразвуковая диагностика проводится в диапазоне от 20 кГц до 500 МГц. В однородной среде направленные волны распространяются с одинаковой скоростью. На фазовом переходе отражаются или преломляются подобно световому лучу. Скорость продольной волны во всех твердых средах почти в два раза превышает скорость поперечной.

Чувствительность у приборов разная, зависит от конструктивных особенностей. Но по сути волны способны отражаться от дефектов, которые равны длине волны или превосходят ее по размеру. Ультразвуком можно определить мелкие дефекты сварных соединений: несплошности, раковины, включения шлака или нерастворимые соединения, крупные зерна, повышающие хрупкость металла.

Преимущества и недостатки ультразвуковой дефектоскопии

Сначала о достоинствах:

  • Это неразрушающий контроль, исследуемую часть конструкции не нужно отделять, разрезать, везти в лабораторию.
  • Ультразвуковыми дефектоскопами для контроля сварных соединений можно пользоваться в лабораторных и полевых условиях.
  • Методы применяются для однородных и разнородных соединений.
  • Для исследования шва не требуется много времени, результат получают на месте.
  • Приборы безопасны для человека, не оказывают вредного воздействия.
  • Достоверность результатов очень высокая, диагностируются многие виды дефектов.

Недостатки связаны с необходимостью подготовки специалистов, ограничениями. Ультразвук затухает в крупнозернистых металлах. Необходимо использовать преобразователи с определенным радиусом кривизны подошвы.

Виды УЗК сварочных швов

Стыки прозвучивают по различной методике:

  • прямым лучом;
  • однократно отраженным;
  • двукратно отраженным;
  • многократно отраженным.

Направление луча в ультразвуковом методе контроля сварных соединений подбирают по нормали, на которой дефекты особенно опасны.

Основные способы локации:

  1. Эхо-импульсная УЗД. Прибор настроен на излучение и прием волны. Если аудиволна не зафиксирована датчиком, все в порядке, в шве дефекты не обнаружены. Если зафиксировано отражение, есть раздел сред.
  2. Эхо-зеркальный метод предусматривает применение датчика, генерирующего волну, и улавливающего приемника. Приборы устанавливают под углом к оси шва. Приемник ловит отраженные волны. По результатам диагностируют трещины в сварном соединении.
  3. Теневая диагностика подразумевает прохождение ультраволн по всей площади шва, приемник устанавливается за сварным соединением. Если звук отражается, возвращается к излучателю, приемник фиксирует теневой участок.
  4. Зеркально-теневая дефектоскопия – сочетание зеркального и теневого исследования. Комплект датчиков регистрирует отраженные звуковые колебания. Чистая волна — шов сделан без нарушений. Наличие глухой зоны – признак несплошностей.
  5. Дельта-метод основан на воздействии направленным лучом. Дефекты определяются по отражению ультразвука, изменению траектории. Для точных результатов требуется деликатная настройка диагностического оборудования.

На практике чаще используют первый и третий методы. Неразрушающий контроль с использованием ультразвука выявляет брак, провоцирующий разгерметизацию сварных изделий. Считается эффективным способом профилактики аварийных ситуаций.

Область и возможности применения методики УЗК

Проверка проводится на соединениях цветных металлов, чугуне, углеродистой и легированной стали. С помощью диагностики УЗК сварных швов выявляют:

  • пористость, связанную с насыщением расплава атмосферными газами;
  • включения ржавчины;
  • непровары;
  • участки с нарушением геометрии детали;
  • трещины в зоне термовлияния;
  • несплошности различной природы;
  • инородные включения в расплаве;
  • структурные расслоения;
  • неоднородность наплавленного слоя;
  • складки наплавочного материала;
  • свищи (сквозные дефекты);
  • провисание диффузионного слоя за пределами стыка.

УЗК-контролю сварных соединений подвергают различные конструкционные элементы:

  • тавровые швы;
  • трубные и фланцевые кольцевые соединения;
  • стыки любой конфигурации, включая сложные формы;
  • продольные и поперечные швы, подвергающиеся разнонаправленным нагрузкам или испытывающим высокое давление.

В инструкциях по ультразвуковому контролю сварных соединений указаны ограничения диагностики, связанные со способностью ультразвука рассеиваться при прохождении через металлическую решетку.

Геометрический диапазон контроля:

  • толщина проверяемых заготовок: mах 0,5–0,8 м, min 8–10 мм;
  • расстояние до контролируемого шва или углубление: mах 10 м; min 3 мм.

Методика применяется в строительной отрасли, автомобильной промышленности, на предприятиях, где есть сосуды высокого давления, котлы, технологические трубопроводы.

Устройство и принцип работы ультразвукового дефектоскопа

У всех приборов есть генератор, излучатель и приемник ультразвука, усилитель сигнала. Устройства различаются по типу генераторов. Чаще используются пьезоэлементы. Ультразвуковой датчик посылает сигналы импульсно, с паузами до пяти микросекунд. Длительность настраивают в зависимости от плотности металла, структурных особенностей изыскиваемых дефектов. По отражению делается качественная и количественная оценка: выявляется дефект, глубина его образования, размеры.

Излучатель находится в подвижном щупе, он двигается вдоль и поперек исследуемых швов.

Точность диагностики зависит от чувствительности приемника, улавливающего прошедшую или отраженную волну. На границе сред волна меняет направление, оператор должен это учитывать. Проще определяются теневые участки – места, где волна отражается. Звуковой сигнал преобразуется в электрический, картинка выводится на осциллограф. Отраженная волна показывает пик, постоянная – прямую линию.

Проверка сварных швов ультразвуком

Технология проверки регламентирована ГОСТ Р 55724-2013. Операторам-контролерам выдают удостоверения. Перед проверкой им проводят инструктаж по ТБ. Проверять приходится соединения, расположенные в труднодоступных местах. Прибор обязательно заземляется. Оценка результатов проводится по нескольким критериям. В журнал ультразвукового контроля качества заносятся следующие данные:

  • протяженность контролируемого сварного шва;
  • описание дефекта (ширина, высота, форма);
  • диапазон пропускаемой волны.

Для диагностики проводится зачистка исследуемой области (валик плюс область термовлияния). Для лучшей проходимости ультразвука на поверхности создают маслянистую пленку. Прибор настраивают по стандарту. Поиск отраженного или пропускаемого сигнала проходит на максимальной амплитуде. В зависимости от важности соединения контроль проводится за один или два прохода.

Штукатурка